skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Golgol, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing penetration of renewable energy resources in distribution systems necessitates high-speed monitoring and control of voltage for ensuring reliable system operation. However, existing voltage control algorithms often make simplifying assumptions in their formulation, such as real-time availability of smart meter measurements (for monitoring), or real-time knowledge of every power injection information (for control). This paper leverages the recent advances made in high-speed state estimation for real-time unobservable distribution systems to formulate a deep reinforcement learning (DRL)-based control algorithm that utilizes the state estimates alone to control the voltage of the entire system. The results obtained for a modified (renewable-rich) IEEE 34-node distribution feeder indicate that the proposed approach excels in monitoring and controlling voltage of active distribution systems. 
    more » « less